Danielle Cave

Critical technology tracker: two decades of data show rewards of long-term research investment

China and the United States have effectively switched places as the overwhelming leader in research in just two decades, ASPI’s latest Critical Technology Tracker results reveal.

The latest tracker findings, which can be found in a new report and on the website, show the stunning shift in research leadership over the past 21 years towards large economies in the Indo-Pacific, led by China’s exceptional gains. 

China led in just three of 64 technologies in the years from 2003 to 2007, but is the leading country in 57 of 64 technologies over the past five years from 2019 to 2023. This is an increase from last year’s Tech Tracker results, in which it was leading in 52 technologies. 

The US led in 60 of 64 technologies in the five years from 2003 to 2007, but in the most recent five year period, it was leading in just seven. 

Critical technologies have been on the agenda for US National Security Adviser Jake Sullivan’s visit to Beijing this week—the first visit by a US NSA since 2016. Meanwhile, dozens of countries are coming together in Australia for the third Sydney Dialogue on Monday to discuss issues around technology, security, cyber and global strategic competition.

Our results show India is also emerging as a key centre of global research innovation and excellence, establishing its position as a science and technology power. India now ranks in the top five countries for 45 of 64 technologies (an increase from 37 last year) and has displaced the US as the second-ranked country in two new technologies (biological manufacturing and distributed ledgers) to rank second in seven of 64 technologies. 

The latest Tech Tracker has updated results for 64 critical technologies from crucial fields spanning artificial intelligence, defence, space, energy, the environment, biotechnology, robotics, cyber, computing, advanced materials and quantum technology areas. The dataset has been expanded from five years of data (previously, 2018 to 2022) to 21 years of data (from 2003 to 2023).

The Tech Tracker is a data-driven website that reveals the countries and institutions—universities, national labs, companies and government agencies—leading scientific and research innovation in critical technologies. It does that by focusing on high-impact research—the top 10 percent of most highly cited papers. We focus on the top 10 percent because those publications have a higher impact on the full technology life cycle and are more likely to lead to patents, drive future research innovation and underpin technological breakthroughs.

Looking at the average share of annual global research across the 64 technologies (see Figure 1 below), shows us the astonishing inversion between the US and China in high impact research.

Figure 1: Average annual research share across the 64 technologies between 2003 and 2023.

China has made its new gains in quantum sensors, high-performance computing, gravitational sensors, space launch and advanced integrated circuit design and fabrication (semiconductor chip making). The US leads in quantum computing, vaccines and medical countermeasures, nuclear medicine and radiotherapy, small satellites, atomic clocks, genetic engineering and natural language processing. 

Another notable change involves the United Kingdom, which has dropped out of the top five country rankings in eight technologies, declining from 44 last year to 36 now. The technologies in which the UK has fallen out of the top five rankings are spread across a range of areas, but are mostly technologies related to advanced materials, sensing and space.

The European Union, as a whole, is a competitive technological player that can challenge the China-US duopoly. Like the US and China, the EU, when aggregating its member countries over the past five years, is in the top FIVE countries in all 64 technologies. With members of the EU aggregated over the past five years, we found that the EU leads in two technologies (gravitational force sensors and small satellites) and is ranked second in 30 technologies. 

Besides India and the UK, the performance of second-tier science and technology research powers (those countries ranked behind China and the US) in the top five rankings is largely unchanged: Germany is in the top five in 27 technologies, South Korea in 24, Italy in 15, Iran in 8, Japan also in 8 and Australia in 7.

In terms of institutions, US technology companies have leading or strong positions in AI, quantum and computing technologies. IBM now ranks first in quantum computing, Google ranks first in natural language processing and fourth in quantum computing, and Meta and Microsoft also place seventh and eighth in natural language processing respectively. The only non-US based companies that rank in the top 20 institutions for any technology are the UK division of Toshiba, which places 13th in quantum communications, and Taiwan Semiconductor Manufacturing Company, which places 20th in advanced integrated circuit design and fabrication.

Key government agencies and national labs also perform well, including the US National Aeronautics and Space Administration (NASA), which excels in space and satellite technologies. The results also show that the Chinese Academy of Sciences (CAS)—thought to be the world’s largest science and technology institution—is by far the world’s highest performing institution in the Tech Tracker, with a global lead in 31 of 64 technologies—an increase from 29 last year. CAS is a ministerial-level institution that sits directly under the State Council, and has spearheaded the development of China’s indigenous science, technological and innovation capabilities, including in computing technologies, nuclear weapons and intercontinental ballistic missiles. CAS also specialises in commercialising its findings and creating new companies. According to CAS, by 2022, more than 2,000 companies had been founded from the commercialisation of its scientific research.

Our report also looks at the combined US-UK-Australia performance in AUKUS pillar two-relevant technologies. It finds that combining AUKUS efforts with those of closer partners Japan and South Korea helps to close the gap in research performance for some technologies. But for others such as autonomous underwater vehicles and hypersonic detecting and tracking, China’s high impact research lead is so pronounced that no combination of other countries can currently match it. 

The graph below shows the share of research across a range of AUKUS pillar two-relevant technologies. (Please click on the image to see it full screen.)

Figure 1: Research share across a range of AUKUS Pillar 2–relevant technologies

We have continued to measure the risk that any country will hold a monopoly in a technology capability in the future, based on the share of high impact research output and the number of leading institutions in the dominant country—noting that for all 64 technologies, only China or the US currently has the lead. The number of technologies classified as ‘high risk’ has jumped from 14 technologies last year to 24 now. China is the lead country in every one of the technologies newly classified as high risk—putting a total of 24 of 64 technologies at high risk of a Chinese monopoly. 

Worryingly, the technologies newly classified as high risk include many with defence applications, such as radar, advanced aircraft engines, drones, swarming and collaborative robots and satellite positioning and navigation. See the below table for a small selection of critical technologies currently classified as ‘high risk’.

The new historical dataset shows the points in time at which countries have gained, lost or are at risk of losing their global edge in scientific research and innovation. It  provides a new layer of depth and context, revealing the performance trajectory countries have taken, where the momentum lies and also where longer term dominance over the full two decades might reflect foundational expertise and capabilities that carry forward even when that leader has been edged out more recently by other countries. The results also help to shed light on the countries, and many of the institutions, from which we’re likely to see future innovations and breakthroughs emerge.

In advanced aircraft engines, for example, US government or government-affiliated institutions performed strongly from 2003 to 2007—with NASA and the US Air Force Research Laboratory ranking first and second respectively—reflecting this technology’s clear relevance to military and space capability. Today, these institutions occupy much lower positions in the new rankings and 10 out of 10 of the world’s top-performing institutions are in China. 

When looking further down the science and technology life cycle, at patent data for example, our research finds there is a closer and more recent competition between the US and China but the overall trends are similar.

China’s dominant high impact research performance across so many technologies doesn’t necessarily equate to the same dominance in actualising those technologies. At times, China is ahead in high impact research because it’s actually behind in the development and commercialisation of that technology and is making major investments to try to catch up to the advances made by other countries over previous decades.

But the fact that China has enhanced its lead since last year’s Critical Technology Tracker results, especially in defence technologies, points to its growing momentum in science and technology, which other countries would be wise to assume will continue.

For some technologies, this inversion in research leadership has occurred because the high impact research output of pioneering science and technology powers such as the US, Japan, the UK and Germany has flatlined, putting them in a position where they’re losing—or at risk of losing—some of the research and scientific strengths they have built over many decades. Some of these long-term changes can be seen, for example, in the dwindling numbers of globally recognised—and sometimes Nobel Prize winning— research and development laboratories based in electronics and telecommunications firms across Europe—Philips of the Netherlands— and the US—AT&T Bell Labs previously known as Lucent Technologies or Alcatel Lucent and now as Nokia (US).

With other technologies, however, the shift is instead being driven by an enormous surge in China’s research outputs over the past 21 years. China has executed a dramatic step-up in research performance that other countries simply haven’t been able to match.

The historical strong performance of the US and other advanced economies in high impact research, which can now be tracked closely, is reflected in their sustained vitality. For example, the US shows continued innovation and leadership in key technology areas amidst immense competition, especially in quantum computing, and vaccines and medical countermeasures. This reflects its long term strengths across the full spectrum of the technology ecosystem. Decades of research effort can lead to decades of payoff in the application and commercialisation of the knowledge and expertise that a country has built up.

Measuring high-impact research, by itself, doesn’t provide a full picture of a country’s current technological or innovation competitiveness of course. Actualising and commercialising research performance into technological gains can be a difficult, expensive and complicated process, no matter how impressive the initial breakthrough. A range of other inputs are needed, such as an efficient manufacturing base and ambitious policy implementation.

But the purpose of the Tech Tracker is not to assess the current state of play but to improve global understanding of countries’ strategic intent and potential future science and technology capability.

Some observers might argue that China’s ascendance into a research power—indeed the research power—doesn’t matter because other countries, the US in particular, remain ahead in commercialisation, design and manufacturing. That might be true for some technologies, but it represents a very short term attitude. China, too, is making enormous investments in its manufacturing capabilities, subsidising key industries and achieving technological breakthroughs that are catching the world by surprise.

Our results serve as a reminder to governments around the world that building technological capability takes a sustained investment in, and accumulation of, knowledge, innovative skill, talent and high performing institutions—none of which can be acquired through only short term investments. In a range of essential sectors, democratic nations risk losing hard-won, long term advantages in cutting edge science and research—the crucial ingredient that underpins much of the development and progress of the world’s most important technologies. There’s also a risk that retreats in some areas could mean that democratic nations aren’t well positioned to take advantage of new and emerging technologies, including those that don’t exist yet. Meanwhile, the longitudinal results in the Tech Tracker enable us to see how China’s enormous investments and decades of strategic planning are now paying off.

The sugar hit of immediate budget savings must be balanced against the cost of losing the advantage gained from decades of investment and strategic planning. Strategic investments are needed in technologies that are identified as important to a country’s national interest. Continuous investments in those technology areas must then follow. And, of course, that must take place alongside complementary efforts that help build capability across the science and technology life cycle: targeted policies on issues such as skilled migration, industry reform and incentives to boost innovation, manufacturing capability and commercialisation opportunities.

Given the extent to which strategic influence will be determined by technological primacy, even the US has demonstrated that it needs trusted partners in research, innovation and industry to maintain an edge over major competitors such as China.

The Tech Tracker results show that countries can benefit from co-operation on technology by pooling their efforts and finding complementary and tangible areas in which to collaborate in an era when science and technology expertise is becoming increasingly concentrated in one country. Without bigger changes to the status quo, the trajectory laid out in this research will continue to be consolidated. 

Partners and allies must plan, act and collaborate more strategically and more ambitiously—indeed, this might be the only way to stay collectively ahead.

ASPI’s two-decade Critical Technology Tracker: The rewards of long-term research investment

The Critical Technology Tracker is a large data-driven project that now covers 64 critical technologies spanning defence, space, energy, the environment, artificial intelligence, biotechnology, robotics, cyber, computing, advanced materials and key quantum technology areas. It provides a leading indicator of a country’s research performance, strategic intent and potential future science and technology capability.

It first launched 1 March 2023 and underwent a major expansion on 28 August 2024 which took the dataset from five years (previously, 2018–2022) to 21 years (2003–2023). Explore the website and the broader project here.

Governments and organisations interested in supporting this ongoing program of work, including further expansions and the addition of new technologies, can contact: [email protected].

Executive Summary

This report accompanies a major update of ASPI’s Critical Technology Tracker website,1 which reveals the countries and institutions—universities, national labs, companies and government agencies—leading scientific and research innovation in critical technologies. It does that by focusing on high-impact research—the top 10% of the most highly cited papers—as a leading indicator of a country’s research performance, strategic intent and potential future science and technology (S&T) capability.

Now covering 64 critical technologies and crucial fields spanning defence, space, energy, the environment, artificial intelligence (AI), biotechnology, robotics, cyber, computing, advanced materials and key quantum technology areas, the Tech Tracker’s dataset has been expanded and updated from five years of data (previously, 2018–2022)2 to 21 years of data (2003–2023).3

These new results reveal the stunning shift in research leadership over the past two decades towards large economies in the Indo-Pacific, led by China’s exceptional gains. The US led in 60 of 64 technologies in the five years from 2003 to 2007, but in the most recent five years (2019–2023) is leading in seven. China led in just three of 64 technologies in 2003–20074 but is now the lead country in 57 of 64 technologies in 2019–2023, increasing its lead from our rankings last year (2018–2022), where it was leading in 52 technologies.

India is also emerging as a key centre of global research innovation and excellence, establishing its position as an S&T power. That said, the US, the UK and a range of countries from Europe, Northeast Asia and the Middle East have maintained hard-won strengths in high-impact research in some key technology areas, despite the accelerated efforts of emerging S&T powers.

This report examines short- and long-term trends, to generate unique insights. We have updated the recent five-year results (2019–2023) to show current research performance rankings (top 5 country results are in Appendix 1). We have also analysed our new historical dataset to understand the country and institutional trends in research performance over the full 21-year period. In select technologies we have also made projections, based on current trends, for China and the US to 2030.

The results show the points in time at which countries have gained, lost or are at risk of losing their global edge in scientific research and innovation. The historical data provides a new layer of depth and context, revealing the performance trajectory different countries have taken, where the momentum lies and also where longer term dominance over the full two decades might reflect foundational expertise and capabilities that carry forward even when that leader has been edged out more recently by other countries. The results also help to shed light on the countries, and many of the institutions, from which we’re likely to see future innovations and breakthroughs emerge.

China’s new gains have occurred in quantum sensors, high-performance computing, gravitational sensors, space launch and advanced integrated circuit design and fabrication (semiconductor chip making). The US leads in quantum computing, vaccines and medical countermeasures, nuclear medicine and radiotherapy, small satellites, atomic clocks, genetic engineering and natural language processing.

India now ranks in the top 5 countries for 45 of 64 technologies (an increase from 37 last year) and has displaced the US as the second-ranked country in two new technologies (biological manufacturing and distributed ledgers) to rank second in seven of 64 technologies. Another notable change involves the UK, which has dropped out of the top 5 country rankings in eight technologies, declining from 44 last year to 36 now.

Besides India and the UK, the performance of most secondary S&T research powers (those countries ranked behind China and the US) in the top 5 rankings is largely unchanged: Germany (27), South Korea (24), Italy (15), Iran (8), Japan (8) and Australia (7).

We have continued to measure the risk of countries holding a monopoly in research for some critical technologies, based on the share of high-impact research output and the number of leading institutions the dominant country has. The number of technologies classified as ‘high risk’ has jumped from 14 technologies last year to 24 now. China is the lead country in every one of the technologies newly classified as high risk—putting a total of 24 of 64 technologies at high risk of a Chinese monopoly. Worryingly, the technologies newly classified as high risk includes many with defence applications, such as radar, advanced aircraft engines, drones, swarming and collaborative robots and satellite positioning and navigation.

In terms of institutions, US technology companies, including Google, IBM, Microsoft and Meta, have leading or strong positions in artificial intelligence (AI), quantum and computing technologies. Key government agencies and national labs also perform well, including the National Aeronautics and Space Administration (NASA), which excels in space and satellite technologies. The results also show that the Chinese Academy of Sciences (CAS)—thought to be the world’s largest S&T institution5—is by far the world’s highest performing institution in the Critical Tech Tracker, with a global lead in 31 of 64 technologies (an increase from 29 last year, see more on CAS in the breakout box on page 19).

The results in this report should serve as a reminder to governments around the world that gaining and maintaining scientific and research excellence isn’t a tap that can be turned on and off. Too often, countries have slowed or stopped investing in, for example, research and development (R&D) and manufacturing capability, in areas in which they had a long-term competitive advantage (5G technologies are an example6). In a range of essential sectors, democratic nations risk losing hard-won, long-term advantages in cutting-edge science and research—the crucial ingredient that underpins much of the development and advancement of the world’s most important technologies. There’s also a risk that retreats in some areas could mean that democratic nations aren’t well positioned to take advantage of new and emerging technologies, including those that don’t exist yet.

Meanwhile, the longitudinal results in the Critical Tech Tracker enable us to see how China’s enormous investments and decades of strategic planning are now paying off.7

Building technological capability requires a sustained investment in, and an accumulation of, scientific knowledge, talent and high-performing institutions that can’t be acquired through only short-term or ad hoc investments.8 Reactive policies by new governments and the sugar hit of immediate budget savings must be balanced against the cost of losing the advantage gained from decades of investment and strategic planning. While China continues to extend its lead, it’s important for other states to take stock of their historical, combined and complementary strengths in all key critical technology areas.

This report is made up of several sections. Below you’ll find a summary of the key country and institutional findings followed by an explanation of why tracking historical research performance matters. We then further analyse the nuances of China’s lead and briefly explain our methodology (see Appendix 2 for a detailed methodology). We also look more closely at 10 critical technology areas, including those relevant to AI, semiconductors, defence, energy, biotechnology and communications. Appendix 1 contains visual snapshots of top 5 country rankings in the 64 critical technologies.

We encourage you to visit ASPI’s Critical Technology Tracker website (https://techtracker.aspi.org.au) and explore the new data.

What is ASPI’s Critical Technology Tracker?

ASPI’s Critical Technology Tracker is a unique dataset that allows users to track 64 technologies that are foundational for our economies, societies, national security, defence, energy production, health and climate security. It focuses on the top 10% of the most highly cited research publications from the past 21 years (2003–2023).9 The new dataset is analysed to generate insights into which countries and institutions—universities, national labs, companies and government agencies—are publishing the greatest share of innovative and high-impact research. We use the top 10% because those publications have a higher impact on the full technology life cycle and are more likely to lead to patents, drive future research innovation and underpin technological breakthroughs.10

Critical technologies are current or emerging technologies that have the potential to enhance or threaten our societies, economies and national security. Most are dual- or multi-use and have applications in a wide range of sectors. By focusing early in the science and technology (S&T) life cycle, rather than examining technologies already in existence and fielded, the Critical Technology Tracker doesn’t just provide insights into a country’s research performance, but also its strategic intent and potential future S&T capability. It’s only one piece of the puzzle, of course: it must be acknowledged that actualising and commercialising research performance into major technological gains, no matter how impressive a breakthrough is, can be a difficult, expensive and complicated process. A range of other inputs are needed, such as an efficient manufacturing base and ambitious policy implementation.

The Tech Tracker’s dataset has now been expanded and updated from five years of data (previously, 2018–2022)11 to 21 years of data (2003–2023). This follows previous attempts to benchmark research output across nations by focusing on quality over quantity, key technology areas and individual institutions, as well as short-term, long-term and potential future trends. This update continues ASPI’s investment in creating the highest quality dataset of its kind.12

Both the website and two associated reports (this one included) provide decision-makers with an empirical methodology to inform policy and investment decisions, including decisions on which countries and institutions they partner with and in what technology areas. A list of the 64 technologies, including definitions, is on our website.13 Other parts of this project include:

  • the Tech Tracker website: ASPI’s Critical Technology Tracker14 contains an enormous amount of original data analysis. We encourage you to explore these datasets online as you engage with this report. Users can compare countries, regions or groupings (the EU, the Quad, China–Russia etc.) and explore the global flow of research talent for each technology.
  • the 2023 report: We encourage readers to explore the original report, ASPI’s Critical Technology Tracker: the global race for future power.15 In addition to analysing last year’s key findings, it outlined why research is vital for S&T advances and it examined China’s S&T vision. The report also made 23 policy recommendations, which remain relevant today.16
  • visual snapshots: Readers looking for a summary of the top 5 countries ranked by their past five years of performance in all 64 technologies (see example below) can jump to Appendix 1.
Example of the visual snapshots depicted further in the report.

Data source: ASPI Critical Technology Tracker.

Full Report

For the full report, please download here.

  1. Critical Technology Tracker, ASPI, Canberra. ↩︎
  2. Jamie Gaida, Jennifer Wong Leung, Stephan Robin, Danielle Cave, ASPI’s Critical Technology Tracker: the global race for future power, ASPI, Canberra, 1 March 2023. ↩︎
  3. 21-year dataset with improved search terms and institution cleaning, see Methodology for more details. ↩︎
  4. In the early years, such as 2003–2007, some of the 64 technologies have not yet emerged and the credits assigned to top countries or institutions are too low to be statistically significant. Where this is the case we have avoided pulling key insights from the rankings of countries and institutions in these technologies. ↩︎
  5. Bec Crew, ‘Nature Index 2024 Research Leaders: Chinese institutions dominate the top spots’, Nature, 18 June 2024. ↩︎
  6. Elsa B Kania, ‘Opinion: Why doesn’t the US have its own Huawei?’, Politico, 25 February 2020. ↩︎
  7. See, for example, Zachary Arnold, ‘China has become a scientific superpower’, The Economist, 12 June 2024.
    ‘China’, Nature, 9 August 2023, https://www.nature.com/collections/efchdhgeci ;
    ‘China’s science and technology vision’ and ‘China’s breakout research capabilities in defence, security and intelligence technologies’ in Gaida et al.
    ASPI’s Critical Technology Tracker: The global race for future power, 14–20; Tarun Chhabra et al., ‘Global China: Technology’, Brookings Institution, April 2020, https://www.brookings.edu/articles/global-china-technology/ ;
    Jason Douglas and Clarence Leong. “The U.S. Has Been Spending Billions to Revive Manufacturing. But China Is in Another League”, The Wall Street Journal, August 3, 2024, https://www.wsj.com/world/china/the-u-s-has-been-spending-billions-to-revive-manufacturing-but-china-is-in-another-league-75ed6309 . ↩︎
  8. Eva Harris, ‘Building scientific capacity in developing countries’, EMBO Reports, 1 January 2004, 5, 7–11. ↩︎
  9. These technologies were selected through a review process in 2022–23 that combined our own research with elements from the Australian Government’s 2022 list of critical technologies, and lists compiled by other governments. An archived version of the Australian Government’s list is available: Department of Industry, Science and Resources, ‘List of critical technologies in the national interest’, Australian Government, 28 November 2022.
    In May 2023, the Australian Government revised their list: Department of Industry, Science and Resources, ‘List of critical technologies in the national interest’, Australian Government, 19 May 2023, https://www.industry.gov.au/publications/list-critical-technologies-national-interest .
    A US list is available from National Science and Technology Council, ‘Critical and emerging technologies list update’, US Government, February 2022, https://www.whitehouse.gov/wp-content/uploads/2022/02/02-2022-Critical-and-Emerging-Technologies-List-Update.pdf .
    On our selection of AUKUS Pillar 2 technologies, see Alexandra Caples et al., ‘AUKUS: three partners, two pillars, one problem’, TheStrategist, 6 June 2023, https://www.aspistrategist.org.au/aukus-three-partners-two-pillars-one-problem/ . ↩︎
  10. Felix Poege et al., ‘Science quality and the value of inventions’, Science Advances, 11 December 2019, 5(12):eaay7323;
    Cherng Ding, et al., ‘Exploring paper characteristics that facilitate the knowledge flow from science to technology’, Journal of Informetrics, February 2017, 11(1):244–256, https://doi.org/10.1016/j.joi.2016.12.004 ;
    Gaida et al., ASPI’s Critical Technology Tracker: The global race for future power, 9. ↩︎
  11. Jamie Gaida, Jennifer Wong Leung, Stephan Robin, Danielle Cave, ASPI’s Critical Technology Tracker: The global race for future power. ↩︎
  12. See more details in the full methodology in Appendix 2. ↩︎
  13. ‘List of technologies’, Critical Technology Tracker. ↩︎
  14. Critical Technology Tracker ↩︎
  15. See Jamie Gaida, Jennifer Wong-Leung, Stephan Robin, Danielle Cave, ASPI’s Critical Technology Tracker: the global race for future power. ↩︎
  16. Jamie Gaida, Jennifer Wong-Leung, Stephan Robin, Danielle Cave, ASPI’s Critical Technology Tracker: the global race for future power, 44. ↩︎

ASPI’s critical tech tracker updates: biotechnology and the tight race towards the top

Biotechnology is one of the world’s biggest industries with a global market share estimated at over US$1.37 trillion (A$2.1tn) in 2022. The massive investment driven by the Covid-19 pandemic has helped boost the market to an estimated annual growth rate of around 14%, putting the expected value of the industry at US$2.44tn (A$3.8tn) by 2028.

ASPI’s Critical Technology Tracker update shows the intense competition between the United States and China in the sector which, along with artificial intelligence, is anticipated to deliver some of the most life-changing technologies over the coming decades.

The update adds four new technologies to the biotechnologies category: novel antibiotics and antivirals, genome and genetic sequencing and analysis, genetic engineering and nuclear medicine and radiotherapy. They join three existing fields in the tracker: vaccines and medical countermeasures, synthetic biology and biological manufacturing.

Our table collates the aggregated percentage of top 10% of highly cited papers in the different biotechnologies for different country groupings.

Of the four new fields, the US leads high-impact research in genetic engineering and nuclear medicine and radiotherapy, while China is ahead in genome and genetic sequencing and analysis, and novel antibiotics and antivirals. Among the previously reported biotech fields, China leads in biological manufacturing and synthetic biology and the US leads in vaccines and medical countermeasures.

In contrast to advanced sensors, the focus of our previous Strategist piece based on the tracker update, high-impact research in biotechnology is strong enough across likeminded nations that the leads established by China would be surmountable through joint efforts by the US and partners such as through the AUKUS agreement or with collaboration with Japan, South Korea and European nations in some combination.

The notable and worrying exception is synthetic biology, in which China produces 52.4% of high impact research and has nine of the top ten ranked institutions, giving the field a high monopoly risk rating. China’s strong performance in synthetic biology is almost twice the percentage of the AUKUS alliance combined with South Korea and Japan. This would be hard to beat even with a multilateral alliance including Europe. Irrespective of technology monopoly risks, the biotechnologies involving gene manipulation need international cooperation on the ethical issues and consensus on appropriate norms to minimise potential biohazard risks.

Synthetic biology is perhaps the most nascent of the biotechnologies and, as an emerging technology on par with quantum, is an area of interest for China with funded research at several institutions including CAS. The field involves redesigning living organisms into ones with new functions with applications in medicine, manufacturing and agriculture. The main distinction between synthetic biology and genome editing is that compared to genome editing, synthetic biology can involve the insertion of longer sections of DNA with the possibility of creating an entirely different organism like a recoded E. Coli.

Lab grown meat is another example of synthetic biology, as is engineering of stem cells into mini robots. Thus, synthetic biology, especially when engendering artificial lifeforms, must be regulated like genome editing and AI with multilateral expert input on where regulations would benefit from a US-Sino dialogue.

Biotechnology encompasses technologies that integrate biology and engineering into new products and processes leading to improved outcomes in health, manufacturing and society. The financial incentives to gain advantage in the sector are enormous given most countries spend more than 6% of the annual gross domestic product on healthcare, which accounts for more than 50% of the biotech industry.

Reflecting the importance governments are attributing to the industry, the United States, Australia, India and Japan are renewing their national biotechnology strategies.

China has listed biotechnology as one of its seven strategic emerging industries in 2010. In its 13th Five-Year plan (2016-2020), China’s Ministry of Science and Technology released a comprehensive biotechnology development plan.

The Covid-19 pandemic brought vaccines and medical countermeasures to the forefront. The US has an exceptionally strong lead in this technology with eight of the top institutions being US-based (with the University of California system as the top research institution).

The Critical Tech Tracker reveals the strong performance of the Middle Eastern countries of Iran, Egypt and Saudi Arabia in novel antibiotics and antivirals. The development of novel antibiotics and antivirals is important both in treating and suppressing infection and diseases. Antibiotics are used not only to treat infections but also to suppress secondary infection during surgeries, thus saving millions of lives. However, the overuse and misuse of antibiotics in the modern world have given rise to drug resistant infections that cannot be treated. Antibiotic resistance is a global threat not only to human health but also to food security, due to its widespread use in animal husbandry and fish farming. The World Health Organisation has called for action to formulate, strengthen and implement policies and procedures to tackle this crisis at all levels.

The University of California is the top institution in three of seven biotechnologies, with a strong lead in both genetic engineering and genome and genetic sequencing. The most significant breakthrough in the two interconnected technologies is the CRISPR gene editing technique pioneered at the University of California Berkeley by Jennifer Doudna and Emmanuelle Charpentier (2020 Nobel Prize winners in Chemistry). The CRISPR-Cas9 technique is set to revolutionise biomedicine, notably the treatment of genetic diseases, by deleting a section of DNA or turning off the gene causing the disease.

Genetic editing and engineering are biotechnologies fraught with ethical concerns, especially when applied to the human genome. There are high-level risks associated with gene editing. For example, the CRISPR-Cas9 technique is not error-proof as the process can insert or delete DNA letters at the points of insertion, potentially leading to a mixture of different versions of the edited cell. The possibility of developing a severely sick baby or a Frankenstein-like monster is no longer far-fetched.

A 2019 report on CRISPR in China has shown that the US is ahead of China by a fingernail on the number of CRISPR patent applications and China catching up on publication numbers and citations.

The tech tracker analysis shows immense competition between China and the US. For example, the US is ahead of China in genetic engineering and China is ahead in genome and genetic sequencing. China’s research in these biotechnologies has focused on agriculture, specifically transgenic crops and animal organs for human transplant. Unsurprisingly, the tech tracker data in these two biotechnologies shows the prominence of agricultural universities as well as biomedical institutes, hospitals and cancer treatment institutions. The established link between cancer and genes has made CRISPR an invaluable tool for cancer research and treatment.

Biological manufacturing, commonly known as biomanufacturing, is defined as processes that incorporate living cells in the commercial production of biomaterials and biomolecules (for use in medicine). China and the US are in first and second place respectively, while India is in third place and has two top-ranked institutions with the Indian Institute of Technology edging ahead of the Chinese Academy of Sciences (CAS), and the Indian NIT securing the third place. India has had a national biotechnology development strategy since 2000 with continuous renewal strategies since, and it aims to become a Global Biomanufacturing Hub by 2025. 

The technologies led by the US are not an immediate threat to Australia with its multilateral alliances in the Quad and AUKUS. The aggregated percentage for a Quad and South Korea alliance outranks China for novel antibiotics and antivirals and biomanufacturing. In the China led biotechnologies (other than synthetic biology), a Quad and South Korea alliance can reverse China’s dominance, with the AUKUS, Japan and South Korea alliance performing the best in genome and genetic sequencing. Our analysis also shows that in the aggregation of the seven biotechnologies, China (27.0%) has a slight lead over the US (25.2%) followed by the United Kingdom (4.2%), Germany (4.1%) and India (4.1%).

Presenting Critical Technology Tracker at The Sydney Dialogue

This session explored ASPI’s landmark Critical Technology Tracker which reveals where countries, universities, national labs, and companies have a competitive advantage across critical technology areas. The discussion explored the methodology behind the research, the companies dominating in areas like artificial intelligence, and how Australia’s performance compared to other nations.  

Speakers in this session included: Danielle Cave, Director, Executive, Strategy and Research, ASPI and Dr Jamie Gaida, Former Senior Analyst, ASPI.

Master of Ceremonies: Nina Walsh.

ASPI’s Critical Technology Tracker

ASPI’s Critical Technology Tracker – The global race for future power

The Critical Technology Tracker is a large data-driven project that now covers 64 critical technologies spanning defence, space, energy, the environment, artificial intelligence, biotechnology, robotics, cyber, computing, advanced materials and key quantum technology areas. It provides a leading indicator of a country’s research performance, strategic intent and potential future science and technology capability.

It first launched 1 March 2023 and underwent a major expansion on 28 August 2024 which took the dataset from five years (previously, 2018–2022) to 21 years (2003–2023). Explore the website and the broader project here.

Governments and organisations interested in supporting this ongoing program of work, including further expansions and the addition of new technologies, can contact: [email protected].

What’s the problem?

Western democracies are losing the global technological competition, including the race for scientific and research breakthroughs, and the ability to retain global talent—crucial ingredients that underpin the development and control of the world’s most important technologies, including those that don’t yet exist.

Our research reveals that China has built the foundations to position itself as the world’s leading science and technology superpower, by establishing a sometimes stunning lead in high-impact research across the majority of critical and emerging technology domains.

China’s global lead extends to 37 out of 44 technologies that ASPI is now tracking, covering a range of crucial technology fields spanning defence, space, robotics, energy, the environment, biotechnology, artificial intelligence (AI), advanced materials and key quantum technology areas.1 The Critical Technology Tracker shows that, for some technologies, all of the world’s top 10 leading research institutions are based in China and are collectively generating nine times more high-impact research papers than the second-ranked country (most often the US). Notably, the Chinese Academy of Sciences ranks highly (and often first or second) across many of the 44 technologies included in the Critical Technology Tracker. We also see China’s efforts being bolstered through talent and knowledge import: one-fifth of its high-impact papers are being authored by researchers with postgraduate training in a Five-Eyes country.2 China’s lead is the product of deliberate design and long-term policy planning, as repeatedly outlined by Xi Jinping and his predecessors.3

A key area in which China excels is defence and space-related technologies. China’s strides in nuclear-capable hypersonic missiles reportedly took US intelligence by surprise in August 2021.4

Had a tool such as ASPI’s Critical Technology Tracker been collecting and analysing this data two years ago, Beijing’s strong interest and leading research performance in this area would have been more easily identified…

Had a tool such as ASPI’s Critical Technology Tracker been collecting and analysing this data two years ago, Beijing’s strong interest and leading research performance in this area would have been more easily identified, and such technological advances would have been less surprising. That’s because, according to our data analysis, over the past five years, China generated 48.49% of the world’s high-impact research papers into advanced aircraft engines, including hypersonics, and it hosts seven of the world’s top 10 research institutions in this topic area.

The US comes second in the majority of the 44 technologies examined in the Critical Technology Tracker. The US currently leads in areas such as high performance computing, quantum computing and vaccines. Our dataset reveals that there’s a large gap between China and the US, as the leading two countries, and everyone else. The data then indicates a small, second-tier group of countries led by India and the UK: other countries that regularly appear in this group—in many technological fields— include South Korea, Germany, Australia, Italy, and less often, Japan.

This project—including some of its more surprising findings—further highlights the gap in our understanding of the critical technology ecosystem, including its current trajectory. It’s important that we seek to fill this gap so we don’t face a future in which one or two countries dominate new and emerging industries (something that recently occurred in 5G technologies) and so countries have ongoing access to trusted and secure critical technology supply chains.

China’s overall research lead, and its dominant concentration of expertise across a range of strategic sectors, has short and long term implications for democratic nations. In the long term, China’s leading research position means that it has set itself up to excel not just in current technological development in almost all sectors, but in future technologies that don’t yet exist. Unchecked, this could shift not just technological development and control but global power and influence to an authoritarian state where the development, testing and application of emerging, critical and military technologies isn’t open and transparent and where it can’t be scrutinised by independent civil society and media.

In the more immediate term, that lead—coupled with successful strategies for translating research breakthroughs to commercial systems and products that are fed into an efficient manufacturing base—could allow China to gain a stranglehold on the global supply of certain critical technologies.

Such risks are exacerbated because of the willingness of the Chinese Communist Party (CCP) to use coercive techniques5 outside of the global rules-based order to punish governments and businesses, including withholding the supply of critical technologies.6

What’s the solution?

These findings should be a wake-up call for democratic nations, who must rapidly pursue a strategic critical technology step-up.

Governments around the world should work both collaboratively and individually to catch up to China and, more broadly, they must pay greater attention to the world’s centre of technological innovation and strategic competition: the Indo-Pacific. While China is in front, it’s important for democracies to take stock of the power of their potential aggregate lead and the collective strengths of regions and groupings (for example the EU, the Quad and AUKUS, to name just a few examples). But such aggregate leads will only be fully realised through far deeper collaboration between partners and allies, greater investment in areas including R&D, talent and commercialisation, and more focused intelligence strategies. And, finally, governments must make more space for new, bigger and more creative policy ideas – the step-up in performance required demands no less.

Partners and allies need to step up and seriously consider things such as sovereign wealth funds at 0.5%–0.7% of gross national income providing venture capital, research and scale-up funding, with a sizable portion reserved for high-risk, high-reward ‘moonshots’ (big ideas). Governments should plan for:

  • technology visas, ‘friend-shoring’ and R&D grants between allies
  • a revitalisation of the university sector through specialised scholarships for students and technologists working at the forefront of critical technology research
  • restructuring taxation systems to divert private capital towards venture capital and scale-up efforts for promising new technologies
  • new public–private partnerships and centres of excellence to help to foster greater commercialisation opportunities.

Intelligence communities have a pivotal role to play in both informing decision-makers and building capability. One recommendation we make is that Five-Eyes countries, along with Japan, build an intelligence analytical centre focused on China and technology (starting with open-source intelligence).

We outline 23 policy recommendations for partners and allies to act on collaboratively and individually. They span across the four themes of investment and talent; global partnerships; intelligence; and moonshots. While China is in front, it’s important for democracies to take stock of their combined and complementary strengths. When added up, they have the aggregate lead in many technology areas.

  1. Visit the Critical Technology Tracker site for a list and explanation of these 44 technologies: techtracker.aspi.org.au/list-of-technologies. ↩︎
  2. Australian Signals Directorate, ‘Intelligence partnerships’, Australian Government, 2023 ↩︎
  3. See ‘China’s science and technology vision’ on page 14. ↩︎
  4. Demetri Sevastopulo, Kathrin Hille, ‘China tests new space capability with hypersonic missile’, Financial Times, 17 October 2021 ↩︎
  5. Fergus Hunter, Daria Impiombato, Yvonne Lau, Adam Triggs, Albert Zhang, Urmika Deb, ‘Countering China’s coercive diplomacy: prioritising economic security, sovereignty and the rules-based order’, ASPI, Canberra, 22 February 2023 ↩︎
  6. Fergus Hanson, Emilia Currey, Tracy Beattie, The Chinese Communist Party’s coercive diplomacy, ASPI, Canberra, 1 September 2020, online; State Department, China’s coercive tactics abroad, US Government, no date, online; Bonnie S Glaser, Time for collective pushback against China’s economic coercion, Center for Strategic and International Studies (CSIS), 13 January 2021, online; Marcin Szczepanski, China’s economic coercion: evolution, characteristics and countermeasures, briefing, European Parliament, 15 November 2022, online; Mercy A Kuo, ‘Understanding (and managing) China’s economic coercion’, The Diplomat, 17 October 2022. ↩︎

Responsible State behaviour in Cyberspace – explainer videos

In 2015, the 193 member states of the United Nations unanimously agreed to a framework for responsible behaviour of States in cyberspace.

This framework includes a set of 11 norms, rules and principles.

In collaboration with some of our partners, ASPI’s International Cyber Policy Centre produced two animated video clips that describe and explain the full framework and the of 11 specific norms.

Video 1

Video 2

ICPC is currently implementing a multi-year capacity-building project to support member states of the ASEAN with the implementation of these 11 UN norms. As the project progresses, additional resources will be made available for stakeholder consultations and input.

From 2-4 December, ICPC participated in the inaugural intersessional meeting of the UN Open-ended Working Group on ICTs in the context of International Security. ICPC’s submission can be found here and on the web site hosted by the UN Office of Disarmament Affairs. 

The video clips are currently available with subtitles in English and Bahasa Indonesia. Additional languages will become available throughout 2020.

For more information on this project and the videos, please contact Bart Hogeveen.

Microsoft partners with the ASPI-ICPC

The International Cyber Policy Centre is proud to announce a partnership with Microsoft.

“There’s a worrying tendency to talk about Cyberspace in the abstract. But it is not a nebulous space. Cyberspace consists of concrete elements in the real world, such as datacentres, undersea cables, laptops and mobile devices. These are designed and manufactured by private companies and that is why the private sector needs to be at the table in any debate on cyber policy.

If anyone had any doubts that Australia and its institutions were a target – the Prime Minister rising to inform the House of Representatives that a cyber attack targeting Parliament House was carried out by a sophisticated state actor and that same actor had targeted major political parties – should have put those doubts to rest.

We live in an interconnected world. Digital technologies have brought incredible benefits and opportunities. Australia’s great tyranny of distance is no longer an excuse nor an insurmountable challenge to economic and social integration with the rest of the world.

The February attack demonstrated graphically how this global interconnectedness has brought new challenges. The technologies that enable economic and social connections are the same platforms that malicious actors use to target Australian organisations and citizens.

To be effective, cyber policy engagement must be multilateral and multi-stakeholder. This is the reason Microsoft was such a strong supporter of last years’ Paris Call – the first of a new type of international cyber agreement involving governments, companies, researchers, think tanks and not-for-profits. Bodies who facilitate and create trusted environments for these often-difficult and nuanced, but critical conversations, are so important. Since its inception in 2011, ASPI’s ICPC has played a critical role in advancing debate and multilateral engagement on cyber issues not just in Australia, but across the Asia Pacific region and ultimately into international fora.

And that is why Microsoft has become a sponsor of the ICPC and why we look forward to working with the ICPC and its partners to further the debate on trust, ethics, privacy and security in our use of technology”.

– Tom Daemen, General Counsel, Head of Corporate External Legal Affairs, Microsoft Australia-New Zealand